北方伟业计量集团有限公司
由于候选物沸点约185℃,为挥发性有机物,因此本文中气相色谱法(GC-FID)可同时测定候选物主组分和挥发性有机杂质色谱纯度,且其和为100%。水分采用卡尔费休库伦法测定,非挥发性有机杂质胶质采用GB/T 8019-2008测定,无机杂质采用GB/T 17476-1998(2004)(ICP-OES法)测定,非溶性固体污染物采用SH/T 0093-1991测定。
质量平衡法是通过分别测定纯品有机物中水分(Xw)、挥发性有机杂质(Xo)、非挥发性有机杂质(Xno)、无机杂质(Xi)和非溶性固体污染物(Xs)等,计算目标成分含量(P)的方法。如前所述,气相色谱法中主成分和有机挥发性杂质含量和为100%,因此质量平衡法中纯度标准物质含量计算方法如下:
根据质量平衡法的内涵,其纯度定值不确定度分量主要有水分、挥发性有机杂质、非挥发性有机杂质、固体污染物等测量引入的不确定度。其中各分量重复性测量数据列于表1,不确定度分析和评定具体过程如下:
挥发性有机杂质采用气相色谱法定量,其引入的不确定度u(Xo)主要有3个分量:1)测量重复性产生的不确定度u1(Xo)。本实验中平行测量6次,计算得到相对不确定度u1rel(Xo)=0.003 1%。2)组分校正因子差异引起的不确定度u2(Xo)。由于本纯度标准物质候选物挥发性有机杂质主要是候选物的同分异构体和结构相近的双环化合物,因此,其响应因子与主成分理论分析十分接近。依据气相色谱分析结果,挥发性有机杂质总含量为0.51%。预估总响应因子差异引入的不确定度为杂质总含量的30%,则相对不确定度u2rel(Xo)=0.15%。3)检测线性引入的不确定度u3(Xo)。由于纯度定值方法研究过程中所确定的进样量均在FID检测器的检测线性范围内,故仪器检出限引起的不确定度u3(Xo)可忽略不计。
由于上述的不确定度分量相互独立,互不相关,因此合成得到相对不确定度
水分测量引入的不确定度u(XW)主要分量有2个:1)测量重复性产生的不确定度u1(XW)。实验中平行测量6次,计算得到u1rel(XW)=0.000 1%。2)电子天平称量产生的不确定度u2(XW),该部分主要由天平的最大允许误差和分辨力造成。实验中天平的最大允误为±0.5 mg,按均匀分布考虑,包含因子,则由其产生的标准不确定度为。此外,天平的分辨力为0.1 mg,按均匀分布考虑,包含因子,则由其产生的标准不确定度为。由于两者相互独立,互不相关,因此合成得到电子天平称量产生的不确定度为。实验中称量的样品质量平均值为872 mg,求得u2rel(XW)=0.032 5%。因u1(XW)和u2(XW)相互独立,互不相关,最终求得urel(XW)=0.032 5%。
非挥发性有机杂质测量引入的不确定度分量u(Xno)主要有3个:1)测量重复性产生的相对不确定度u1(Xno)。实验中平行测量6次,计算得到u1rel(Xno)=0.000 02%,可忽略不计。2)温度产生的不确定度u2(Xno)。实验中温度分量扩展不确定度为0.20℃(k=2),实验温度为230℃,求得u2rel(Xno)=0.043 5%。3)电子天平称量产生的不确定度u3(Xno)。实验中称量用天平相同且称量的样品质量为53.000 0 g,因此u3rel(Xno)=(0.290/53 000.0)×100%=0.000 5%。以上3个分量相互独立,互不相关,最终求得urel(Xno)=0.043 5%。
固体污染物测量引入的不确定度u(XS)主要分量有3个:1)测量重复性引入的不确定度u1(XS)。实验中平行测量6次,计算得到u1rel(XS)<0.000 1%,可忽略不计。2)电子天平称量引入的不确定度u2(XS)。实验中称量用天平相同且称量粘附固体污染物的滤纸样品质量平均值为164.9 mg,u2rel(XS)=(0.290/164.9)×100%=0.175 9%。3)体积称量引入的不确定度u3(XS)。实验量取样品的体积为5 L,最大允差为±0.01 L,求得u3rel(XS)=0.2%。以上3个分量相互独立,最终求得urel(XS)=0.266 3%。
采用电感耦合等离子体发射光谱仪测定的无机杂质含量极少。与其他杂质含量相比,对纯度标准物质的定值影响可忽略不计。
综上,由于质量平衡法引入的各不确定度分量相互独立,互不关联,因而将各不确定度分量进行合成,得到质量平衡法引入的相对标准不确定度:
声明:本文所用图片、文字来源《计量学报》,版权归原作者所有。如涉及作品内容、版权等问题,请与本网联系删除。
相关链接:标准物质,气相色谱,电感耦合等离子体发射光谱仪
2021年7月6日,伟业计量成功申报28种国家一级标准物质!在此之前,伟业计量已获批近五百种国家二级标准物质,此次生物基体类元素分析标准物质的成功申报,标志着伟业研发水平跻身国内先进行列!
了解更多> >为进一步确认其分子结构,采用核磁共振氢谱和碳谱分别对候选物进行了结构鉴定。依据氢谱中氢原子个数及其化学位移、碳谱中碳原子个数及其化学位移相关信息,并结合GC-MS的分析结果,可确认标准物质候选物候选物的分子结构。在此基础上,本文筛选出适合定量分析的乙酰苯胺作为内标物,对候选物的纯度进行了核磁定量分析
了解更多> >由于候选物沸点约185℃,为挥发性有机物,因此本文中气相色谱法(GC-FID)可同时测定候选物主组分和挥发性有机杂质色谱纯度,且其和为100%。水分采用卡尔费休库伦法测定,非挥发性有机杂质胶质采用GB/T 8019-2008测定,无机杂质采用GB/T 17476-1998(2004)(ICP-OES法)测定,非溶性固体污染物采用SH/T 0093-1991测定。
了解更多> >电子天平称量产生的不确定度u(m)主要由天平的最大允差和分辨力造成。实验中测量用天平的最大允差为±0.05 mg,按概率均匀分布考虑,包含因子,则由其产生的标准不确定度为。此外,天平的分辨力为0.01 mg,按概率均匀分布考虑,包含因子,则由其产生的标准不确定度为。由于两者相互独立,互不相关,
了解更多> >标准物质候选物的标准不确定度uCRM由3部分组成,即定值方法引入的标准不确定度uchar,包括重量平衡法和核磁定量法引入的标准不确定度;标准物质均匀性引入的标准不确定度ubb;稳定性引入的标准不确定度usts。因三者相互独立,互不关联,则合成相对标准不确定度计算如下:
了解更多> >通话对您免费,请放心接听
温馨提示:
1.手机直接输入,座机前请加区号 如13803766220,010-58103678
2.我们将根据您提供的电话号码,立即回电,请注意接听
3.因为您是被叫方,通话对您免费,请放心接听
登录后才可以评论