北方伟业计量集团有限公司
激光控制器的主要作用是驱动激光器工作和控制调节激光器温度,可调谐半导体激光器被1个频率为4Hz锯齿波叠加1个高频正弦波驱动,激光器温度由激光控制器控制的热电制冷片控制。数据处理系统具有锁相放大功能,能够提取透射信号中的可信号,2f信号与激光发射信号Io之比与被测物的浓度值成正比,见式(3)。为了保证分析仪测量结果不受温度变化影响,气室外部加有恒温装置。
TDLAS技术是在分子水平上对被测量气体组份进行精确测量,特定频率的光子传递过程中激发低能级的气相分子到高能级。正是利用光与被测气体组份之间的这种相互作用,可以很容易地从光信号中提取出被测组份的一些相关物理特性,从而让非接触快速测量成为可能,并且可以实现快速、连续的实时测量。H20的吸收谱线如图3和图4所示。
通过采用TDLAS法,采用抽取式测量,提高取样量的准确度;通过开展现场实验,确定现场分析的检测下限、准确度和稳定性;通过实验数据的分析处理,掌握激光法水露点在线测量技术。主要设备组成如图5所示。
直接吸收光谱法为传统的基于波长调制技术的优化谐波信号方法。直接吸收光谱法虽然测试系统简单,但是如果待测气体浓度较低,而信噪比又很小的时候,会存在较大的测量误差。为了提高天然气中待测气体组份浓度测量的信噪比,需要采用波长调制技术。波长调制技术测量示意图如图6所示,其原理是在原有的激光驱动信号中加载一个高频正弦信号,产生的激光信号经过气体介质吸收后,利用锁相放大器解调制,得到其二次谐波信号;用二次谐波信号可以大大提高系统测量精度和量程,如图7所示。
1)测量介质:管输高压天然气,压力为0.2~12MPa:
2)测量范围和精度:水含量分析测量范围为0~400μL/L,测量误差为±2%FS;
3)测量速度:实时在线测量,不低于1次/s;4)无耗材,6个月内仪表偏移量不超过±2%FS。
图8为分析仪内部结构示意图,其中虚线为光路。激光控制器2控制半导体激光器5发光,发出的红外光通过光学窗口进入气室,红外光在被气室中气体吸收部分能量后,被反射镜13反射至红外探测器6,探测器将光信号转换为电信号,由数据处理系统3完成最终的数据处理并在显示屏上显示结果。从图8中可以看出激光器与探测器并不与被测气体接触,因此被测气体中的污染物不会对激光器与探测器造成影响。而且由于系统测量结果是由被测信号与激光强度的比值决定的,因此即使光学窗口或者反射镜被一定程度污染,分析仪仍然能够正常工作,不会影响到系统的测量精度。
声明:本文所用图片、文字来源《计量学报》,版权归原作者所有。如涉及作品内容、版权等问题,请与本网联系
相关链接:天然气,污染物,天然气水合物气体标准物质
通话对您免费,请放心接听
温馨提示:
1.手机直接输入,座机前请加区号 如13803766220,010-58103678
2.我们将根据您提供的电话号码,立即回电,请注意接听
3.因为您是被叫方,通话对您免费,请放心接听
登录后才可以评论