北方伟业计量集团有限公司
全氟异丁腈与二氧化碳混合气体标准物质采用称量法制备,通过精确称量加入到气瓶中的原料气体质量,原料气体的纯度和各组分的摩尔质量计算得到混合气体中各组分的浓度和不确定度。称量过程采用替代法称量。典型的制备流程见图4,其中不确定度为根据称量法计算得到的全氟异丁腈浓度的相对标准不确定度。
由于全氟异丁腈气体的饱和蒸气压较低,比较容易液化,为了保证研制混合气体足够均匀稳定,对于1%moL/mol和10%moL/mol的混合气体,气瓶内气体总压力不高于1.5MPa,对于30%moL/mol的混合气体,气瓶内气体总压力不高于0.5MPa,同时混合气体的保存和使用温度在4℃以上。
原料气体的纯度分析需要对纯气中可能存在的杂质进行检测。针对二氧化碳纯气中可能存在的全氟异丁腈杂质,采用气相色谱质谱联用分析方法。该方法基于岛津的2010气相色谱和质谱联用仪,采用GasPro色谱柱(30m×0.32mm)。质谱扫描模式为选择离子碎片69进行扫描。检测二氧化碳中1μmoL/mol的全氟异丁腈参考气体的典型谱图如图5,按照3倍噪声推出,该方法的检测限为23nmoL/mo1。
二氧化碳纯气在GCMS上的典型谱图,其中都没有发现明显的全氟异丁腈的色谱峰,由此判断二氧化碳纯气中如果含有全氟异丁腈杂质,其浓度不会高于23nmoL/mo1,对于本次标准物质的研制定值影响很小,可以忽略。
全氟异丁腈的纯度中的杂质检测,分别采用了GCMS、GCTCD和FTIR手段。图6为GCMS测量全氟异丁腈纯气的谱图。GCMS方法基于岛津的2010气相色谱和质谱联用仪,采用GasPro色谱柱(30m×0.32mm),质谱扫描模式为全扫描模式。
图6中保留时间15min附近出现一个主峰,通过分析该峰对应的碎片离子谱图确认该组分为全氟异丁腈。图6中保留时间12.5min附近出现一个明显小峰,该峰对应的组分为全氟异丁腈的杂质。其碎片离子谱图如图7,其中主要的碎片离子的质量数也是69,同时伴有质量数为82和15l的碎片离子,经解析这些碎片离子(表1),可以判断该杂质为七氟丙烷,分子结构式为:
七氟丙烷与全氟异丁腈具有相似的分子结构,其中GCMS中的电离程度和离子碎片强度相似,所以根据峰面积归一化原理评估七氟丙烷在全氟异丁腈纯气中的摩尔比浓度约为0.1007%mol/mol。
此外,还采用安捷伦公司生产的配有TCD检测器的Micr0GC490作为分析手段,测量了全氟异丁腈纯气中的N2和C02杂质。典型的N2和C02测量谱图如图8和图9。
图8中上面的色谱图中氮气峰明显,其对应的浓度为503μmoL/mol,可以推测出该方法的检出限约为50μmoL/mol(按3倍噪声计算);而下面的色谱图为全氟异丁腈纯气的谱图,其中看不到明显的氮气峰,说明氮气杂质在全氟异丁腈纯气中的浓度不高于50μmoL/mol。
图9中上面的色谱图中C02峰明显,其对应的浓度为9.63μmoL/mol;而下面的色谱图为全氟异丁腈纯气的谱图,其中看到明显的C02峰。根据上下两张谱图的峰面积,可以计算出C02杂质的浓度约为5μmoL/mol。
另外,采用傅里叶变换红外光谱仪,测量了全氟异丁腈纯气中的水分杂质约为90μmoL/mol。可见该全氟异丁腈纯气的主要杂质为七氟丙烷,而本标准物质研制所使用的全氟异丁腈纯气的纯度为99.8873%。
声明:本文所用图片、文字来源《计量学报》,版权归原作者所有。如涉及作品内容、版权等问题,请与本网联系
相关链接:二氧化碳,全氟异丁腈,傅里叶变换红外光谱仪,七氟丙烷
国家主席习近平近日出席全球领导人气候峰会,提出了构建人与自然生命共同体倡议。同时,再次宣示中国将力争2030年前实现碳达峰、2060年前实现碳中和的奋斗目标,与国际社会共同应对气候变化带给人类的挑战。
了解更多> >近日,中国农业科学院作物科学研究所作物耕作与生态创新团队和南京农业大学通过联合攻关,发现大气二氧化碳浓度升高(eCO2)可以显著促进水稻生长,但对甲烷排放的促进作用呈明显下降趋势,说明国际上远远高估了未来气候背景下稻田甲烷的排放量。最近中美“应对气候危机”的联合声明中强调加强非二氧化碳温室气体甲烷的减排行动,我国也承诺到2030年前实现碳达峰、2060年前碳中和,该发现可以为我国乃至全球农业领域,制定碳达峰碳中和行动纲领提供更科学的决策依据。5月6日,该研究成果在《作物学报(TheCropJou
了解更多> >在人类繁衍进化的过程中,人类早已习惯了燃烧煤炭、石油为主的化石能源从而获得电、热等能源。并且随着社会工业化的发展,人类在工业社会中过多的燃烧了煤炭、石油和天然气,这些燃料燃烧后放出大量的二氧化碳气体进入了大气,使其吸热性强的温室气体逐年增加,大气的温室效应也随之增强,其引发了一系列问题已引起了世界各国的关注。
了解更多> >本文主要讲述化学新闻对化学教学的作用,特别对化学新闻的收集、筛选以及如何利用和教学内容相配套的化学新闻来促进化学教学和培养学生的学习兴趣进行了研究,反映了化学与科技、生活之间的联系,真正体现了“从生活走进化学,从化学走向生活”的新课程理念。
了解更多> >盐藻及提取物是我国已批准的新食品原料,其中主要的功效因子为β-胡萝卜素。与高等植物源和人工合成的β-胡萝卜素不同,盐藻中的β-胡萝卜素组分含有大量顺式(Z-)异构体,主要包括9Z-和13Z-异构体。基于此,文章分析了近年来我国盐藻及提取物保健食品应用研究情况:(1)盐藻源β-胡萝卜素组分的几何异构体组成测定,(2)盐藻源β-胡萝卜素组分视黄醇当量的确定,(3)盐藻源β-胡萝卜素在保健食品中使用量的安全性评估。
了解更多> >通话对您免费,请放心接听
温馨提示:
1.手机直接输入,座机前请加区号 如13803766220,010-58103678
2.我们将根据您提供的电话号码,立即回电,请注意接听
3.因为您是被叫方,通话对您免费,请放心接听
登录后才可以评论